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Introduction:

Compressive failure of plates with a cutout can be modeled by considering
either the strength failure or the loss of stability of the load-carrying
fibers. Strength failure predictions based on point-stress and average-stress
criteria, originally developed for tensile loadings, have been used [1-3] for
compressive loadings. In the application of the point-stress criterion, for
example, compressive failure of the fibers at a pre-determined distance from
the hole boundary under the action of longitudinal stress along the fiber is
assumed. Despite its tempting simplicity, the point-stress criterion does not
provide insight into the local material behavior and does not relate the local
behavior to the failure process. Failure of composite materials is generally
complex and micromechanically governed. It is important that the physical
characteristics of the actual failure process be reflected by an appropriate
model. A microbuckling failure criterion {4-5] is a step in this direction.
It can be applied to the principal load-carrying fibers at a point in a similar
fashion as the point-stress criterion. Microbuckling has been shown to be a
critical failure mode for composites with a highly flexible matrix material.
For practical composites with a high modulus resin, such as graphite/epoxy,
microbuckling occurs at load values much higher than observed in experiments
[5]. Moreover, similar to the recent applications of the point-stress failure
criterion [2-3], microbuckling criterion assumes the failure to be the result
of unidirectional stresses along the fiber direction. It is suspected that
shearing stresses, either induced by the presence of a discontinuity or
resulting from externally applied loads, may affect the compressive failure.

Experimentally observed shear crippling failure mode [2], Fig 1, for plates

with a hole is believed to be [6] the result of kinking failure of the principal
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load-carrying fibers. Fiber kinking is characterized by a band of buckled and
fractured fibers, Fig 2, in a laminate at a point near a notch, cutout, or a
defect under the a;tion of both shearing and compressive deformations [7-10].
Therefore, a change in the relative magnitudes of the shearing and compressive
stresses for different layups may affect the failure load. The effect of
shearing stresses may be particularly important for anisotropic laminates or
for plates under combined compressive and shearing loads.

The present work is an investigation of a failure model for orthotropic
and anisotropic plates with a hole under combined in-plane loadings. A model
previously developed for fiber kinking failure of load-carrying plies near a
crack [11] under combined local compressive and shear loadings is applied to
plates with holes. A different version of the model, which is expected to be
suitable for cases which the shear failure is dominant, is also developed.

In addition to the externally applied compressive load, in-plane shear loading
is also considered. To demonstrate the models, failure predictions are first
compared with available experimental results for quasi-isotropic and
orthotropic laminates under axial loading. The applied loading is then
extended to a combined axial and shear loading. Predictions are also made for
anisotropic laminate configurations, obtained by rotating the principal axis

of orthotropy with respect to the load direction.



Failure Models:

The failure models presented in this paper include the effects of local
compressive and shearing stresses near a cutout on the failure of load-carrying
fibers. These stresses may be the result of externally applied normal loads
along the axis of the plate [11], or as a result of combined axial and shear
loads. The models modify Rosen's microbuckling model [4] to include the
shearing stresses. Individual fibers are modeled as beams on elastic
foundation. The cross section of the fiber beam is rectangular with a
thickness equal to the fiber thickness h and a unit depth. The thickness of
the foundation is equal to the distance between the fibers, 2c¢, Fig 3-a.
Following Rosen[4], shearing deformation of the fibers and the extensional
deformation of the matrix are neglected. Two assumptions concerning boundary
conditions are tried. First the fiber ends are assumed to remain straight and
one end left free to deflect sideways under the action of the side force
resulting from the shearing stresses, Fig 3-b. Second, a fiber model with
simply supported end conditions is cénsidered, Fig. 3-c. The two assumptions
for the boundary conditions have led to two different failure models.
Following is the derivation and discussion of the two models.

An energy approach is used for the formulation of the equilibrium equation
and boundary conditions for the fiber. Taking the first variation of the total

energy of the system, the equilibrium equation of the system can be obtained

as
(E,.I v")" + [ P, - 2c G ( 1-+ll_)2] v'=0 (1)
f f f m 2c

and general boundary conditions at x = 0 and x = £ as,
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the fiber stress for the principal load-carrying lamina. The value of the
maximum stress that can be carried by a fiber is not well established in the
literature, and is assumed here to be 2400 MPa. The value of the fiber length
assumed for the model is £ = 0.05 mm. This is a representative value for the
length of broken fiber fragments observed in reference 10.

Simply Supported Ends: At x = 0 the v = 0 and the force boundary condition

of group II apply. For x = £, the force conditions of the both groups I and
IT apply. With the simply supported end conditions the fiber microbuckling
load is obtained to be independent to the fiber length. In fact, the critical
fiber load is exactly same as the one used by Rosen. But, as opposed to the
Rosen's model, before the microbuckling load is achieved the fiber deforms
sideways (linearly in x direction), Fig. 3-c, resulting in a constant shearing
stress along the fiber without bending it. The magnitude of the shearing
stress is given by

=6 (1+3) s, / [2¢6 (1422 - P_] (3)

Xy 2c f m = 2c f
As the compressive fiber load approaches the fiber microbuckling load, the
shearing stress becomes unbounded. The rate of increase of the shear stress
is controlled by the magnitude of the side force. It is assumed, in this case,
that the excessive shearing stresses developed may cause the shear failure in
a perpendicular direction to the fiber provided that the fiber matrix interface
is intact.

The application of the model is the same as the previous model. One needs
to find the point where the shearing stress (which is a function of the
compressive loads) is compared to the allowable shearing stress at a distance
r from the cutout boundary. The allowable stress level is assumed to be the

short beam shear strength of the unidirectional material, Table 1.
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The two models are applied to plates with a circular hole. The value of
r is determined by using experimental data available in the literature. An

analytical approach is used to calculate the stresses around the hole.



%

Stress Solution Around a Circular Hole:

An elasticity solution [12] for the stresses around an elliptical or
circular hole is used, in conjunction with classical lamination theory, to
determine the location of the point around the hole at which the combination
of compressive and shear stress will result in fiber failure for the principal
load-carrying lamina. The solution assumes an infinitely large homogeneous
anisotropic plane with a traction free elliptical hole. A remote uniaxial
stress §, at an arbitrary orientation a with respect to the X axis is applied

to the plate, Fig. 4 at infinity. The stress state at infinity is, therefore,

c: = Q COSZa 0; =Q Sinzc T:y= 2 Sina Cosa (4)
The stress components near the hole for the problem are {12},
2 2 ., 2
o= @ Cos® a + 2 Re [s1 o0 (Zl) +s; vé (22)]
- 2 '
o, = 8 Sin“a + 2 Re [oo (Zl) + vé (22)] (5)

Ty " @ Sina Cosa - 2 Re [sloé (Zl) ts, wé (Zz)l

where the primes denote the derivative of the complex potentials Qo and Yo with

respect to the complex arguments Z, and ZZ’ respectively, and s. and s, are

1 1 2
the non-conjugate roots of a characteristic equation which depends on the
anisotropic elastic compliance coefficients. The complex variables Z1 and Z2

are defined in the cartesian coordinates
= -+ =
Z1 X+ 8y 22 X+ S,y (6)
The derivatives of the complex functions, §° and Yo are,

Z

o' (Z,) = Ay(2,0) 1 - 1
0 1 1 (Zi - (a2 + S% bz))i
(7)
Z
Yo (Z5) = A, (ge0) 1 - 2
° 2 (Z g - (& + Sg bz))i
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-8 (a - 15 b) b (s, Sin2a + 2 Cos%a) + fa (25, Sin%a + Sin2a)
A1 (2,0) =

2
4(sy - s,) (a° + S§ b%)
(8)
ig(a - is, b) b (s; SinZa + 2 Cos’a) + fa (25, Sin“a + Sin2a)

"A, (2 =
2( ) 4 (s1 - 52) (a2 + 'Sg b2)
For the case of a circular hole under loading along the y-axis the two axis,
a and b, of the ellipse are equal to the hole radius, R, and the a« = /2 .
For a plate with finite dimensions, the stresses obtained by the above
formulation must be corrected for finite size effects. For orthotropic plates
the correction factor is not only a function of the hole aspect ratio, d4d/VW,
but also is a function of the degree of orthotropy of the material {16]. 1In
the present work only corrections for finite width from reference [13] are
applied. Therefore the examples presented are limited to plates with large

length to width ratios.



Failure Predictions:

The kinking failure model using both the zero slope end conditions and
simply supported end conditions are first used in an effort to capture the
essential features of the available experimental data. TFor comparison
predictions are also made by using the point-stress criterion. Experimental
data available in the literature is typically for graphite-epoxy specimens.

Representative material properties used for graphite-epoxy are given in Table

1.

Experimental-Prediction Correlation: Using the experimental values of the

far-field failure strains for quasi-iéotropic plates with a hole [2], the value
of the distance, r, from the crack tip to the failure point is determined to
be 1.5 mm for the kinking model with fixed end conditions and 1.2 mm for the
point stress model, Fig 5. Since r is assumed to be independent to the laminate
layup, this value is used for the rest of the results presented. Predictions
are also made for some +45°-dominated plates with a hole, Fig 5. The present
model agrees well with the experimental results. The point-stress criterion,
on the other hand, predicts far field failure strains which are too high for
the +45°-dominated plates and requires a different value of either the distance
r or the failure stress as the laminate is changed. This is expected because
the failure of *45°-dominated laminates is affected more by shearing stresses
than 0°-dominated laminates, therefore, a model that can include the combined
effect of shearing and compressive stresses perform better.

The model that uses the simply supported boundary conditions, on the other

hand, did not correlate well with the experimental results, Fig. 6. Therefore,



in the following discussion only the model with zero slope end conditions is
used.

The proposed kinking model was also checked against a recent experimental
results [3] to see the effect of the amount of 0° plies in the laminate on
failure loads, Fig 7. Ply orientations for different laminates used are
summarized in Table 2. Predictions made by the present and the point-stress
models are based on the same r values that are used in Fig 5. The point-stress
model shows increased load carrying capacity as the percent of 0° plies is
increased. The present predictions made for percent of 0° plies higher than
70% indicate, however, a drop in the load carrying capacity of the plates.
Most of the predictions in the figure are based on the failure of 0° plies which
are principal load-carrying layers in the laminate. But for laminates with a
very small thickness of 0° plies the failure of 0° plies may not necessarily
mean failure of the plate. The solid and dashed lines with dots on them
(extended from 0 % 0° plies) for small values of the percent of 0° layers are
obtained by assuming the failure to be in the #45° plies.

Plates under combined loading: Predictions are also made for plates under the

combined action of externally applied compressive and shear loadings. For
plates under axial compressive force only, the principal load-carrying plies
are the 0° plies oriented along the loading direction or the plies oriented
closest to axial direction. The determination of principal load-carrying plies
is less obvious in the case of combined loading. Depending on the ratio of
the applied compressive force to the shearing force, +45° plies can experience
higher compressive stresses than the 0° plies. In applying the present model
or the point-stress model for laminates with different layups, the ply which

gives the lowest fajilure load is assumed to be the one which controls the
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failure. However, we must note that the failure prediction based on the first
ply failure is not good when the ply carries a small portion of the applied
load. Such cases require further investigation of analytical - experimental
failure load correlation to gain confidence in determining plies that are
critical for failure. In the present work, for cases where the predictions
indicate plies which do not constitute the majority of the thickness are
critical, predictions for second most critical plies are also presented.
Failure load predictions, obtained by using the point-stress criterion
without the effect of local shearing stresses and the present model, are shown
in Fig. 8 for a quasi-isotropic plate with a hole aspect ratio of 0.1. The
failure load is normalized with respect to the failure load of the laminate
with no applied shear stress. For small values of the ratio of the shear load
to compressive load the present model predicts significant reduction in the
load carrying capacity whereas the point-stress criterion predicts negligible
effect. For applied shearing stress equal to half the compressive stress, the
'present model suggests almost 30% reduction in failure load. Up to this value
of the ratio of the shear stress to compressive stress the failure of the plate
is governed by the failure of 0° plies in the laminate. As the relative
magnitude of the shear load is increased beyond half the compressive load both
models suggest the failure to be driven by the failure of *45° plies, and the
predictions from both models get closer to each other. For shear stress equal
to compressive stress, the reduction in the failure load is as much as 45% and
both predictions are within 9% of one another. Similar curves generated by
using the present kinking model for different values of hole aspect ratio, Fig.

9, showed a negligible effect of the hole size on failure load ratio.
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Comparison of the failure loads predicted by the present kinking model and the
point-stress model are presented in Figs. 10 and 11 for two other laminates,
namely laminate D and F. The predictions in Fig. 10 for the laminate D are
similar to the predictions for the quasi-isotropic laminate in Fig. 8. The
shift of failure from 0° to *45° layers for the two models in Fig. 10, however,
occur at two different values of the ratio of the shcar load to compressive
load and they are both larger than 0.5 obtained for the quasi-isotropic
laminate. For the laminate F, both models predict similar reductions in the
load carrying capacity if the failure is predicted by the failure of the 45°
layers in the laminate. However, for small values of the ratio of the shear
load to the compressive load the failure is expected to be governed by the
failure of the 0° layers (even to the right of the vertical lines that indicate
shift of failure from 0° to #45° plies because *45° plies constitute only a
small portion of the laminate thickness), and there is a large discrepancy
between the predictions of the two models. The predictions based on the 0°
failure are extended beyond the vertical line that indicates shift of failure
from 0 to *#45° plies, and maybe used for failure predictions instead of the
ones based on the failure of #45° plies.

Normalized failure loads predicted by the present model for four different
laminates (including the ones that are discussed above) are summarized in Fig.
12 for a hole aspect ratio of 0.2. The layup of each laminate is indicated
in the figure by letters from Table 2. The laminate with no 0° plies is the
least sensitive one to the presence of the applied shear load. For a ratio
of shear to compressive load of 0.5 there is a reduction of only 20% as opposed

to the (048/14512/906) laminate (61.5% 0° plies) which the load carrying
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capacity is reduced by 47%. The change in the failure mode (0° or *45° governed

failure) is indicated for each line by a short vertical line segment.

Anisotropic plates under compression:

Failure predictions under pure compressive loads are made for the same
set of laminates presented in Table 2 by rotating the principal axis of
orthotropy with respect to the loading direction. Because of the anisotropy
introduced with respect to the loading axis, applied compressive stresses
induce shearing stresses in the plane of the plate. Such configurations proved
to be beneficial for advanced aircraft design applications due to improved
aeroelastic response [14]. It is exbected, however, that such compression
shear coupling may result in a more critical stress state around a cutout which
would lead to an early failure. Incorporation of the effect of shearing
stresses on failure in the present model allows us to asses the effect of
anisotropy.

Effect of shear compression coupling on the compressive failure strength
is investigated first for a quasi-isotropic plate. Although isotropic in the
in-plane stiffness properties, quasi-isotropic laminates demonstrated an
anisotropic nature in tensile strength [15]. A reduction observed in strength
for off-axis tension specimens is attributed to the interlaminar stresses at
the free edge. For the compressive case studied here, change in relative
magnitudes of the compressive and shearing stresses around the cutout changed
the compressive strength as the laminate is rotated. Ratio of the compressive
fajlure load of a plate with a quasi-isotropic laminate rotated with respect
to the loading axis to that of an unrotated plate (loaded along the 0° plies)

is given in Fig. 13 for both the present model and point-stress model. The
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point-stress model predicts an increase in the failure load as the angle of
rotation approaches 22.5°, whereas, the present model predicts as much as 10%
reduction in the failure load. The difference between the two predictions is
entirely due to the inclusion of the shearing stresses around the hole in one
of the models.

Similar curves obtained for some of the orthotropic laminates of Table 2
are presented in Figs. 14 through 16 for the range of angle of rotation from
0 to 45°. For the laminate D which is similar to a quasi-isotropic laminate
the response, Fig. 14, is similar to the quasi-isotropic layup but the symmetry
with respect to the 22.5° is destroyed. In fact, both models predict decrease
in failure load for angle of rotations larger than 35°. For a laminate with
a high degree of orthotropy in favor of the applied load direction (laminate
F), the failure load decreased significantly as the plate rotated, Fig. 15.
Note that both models predict that the failure to occur at the #45° plies
(referred to the original layup) when the plate is rotated by 5°. But for such
a small percentage of +45° plies in the laminate, the final failure may be
governed by the failure of 0° plies. In that case the two models again give
contradictory predictions as in the case of quasi-isotropic plates. For a
rotation angle of 20° the present model predicts as much as 25 % reduction in
the failure load, whereas point-stress model predicts 10 % increase. For a
laminate with a high degree of orthotropy in favor of the direction
perpendicular to the loading direction (laminate C), on the other hand, the
failure load increased as the angle of rotation is increased, Fig. 16. Failure
is predicted to be on the 0% plies for the most part of the range considered
for both failure models. Point-stress model predicted significantly higher

gains in the failure load compared to the present model. Failure predictions
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by the present model for most of the laminates given in Table 2 are compared
in Fig. 17. Largest gains in the failure load is obtained for the laminate B
which had mostly #45° plies and no 0° plies. The most serious reductions in
the failure load is obtained for the laminate with mostly 0° plies.

Anisotropic plate configurations mentioned above is assumed to deform
freely under the compressive loads. Because of the shear compression coupling
introduced by the anisotropy with respect to the loading axis, the plate
deforms in shear and the loaded edge shifts sideways. If one tests such an
anisotropic configuration, on the other hand, the in-plane shear deformation
would, most probably, be prevented by the support fixture at the loaded edge.
This is equivalent to applying a shear load in a direction opposite to the
rotation of the plate‘as the compressive load is applied. Failure predictions
simulating such a combined loading for anisotropic plates are given in Fig.
18 for the laminate F. For simplicity the magnitude of the shearing force is
assumed to be equal to half of the applied compressive load. In an actual case
the ratio of the shear load to the compressive load would be a function of angle
of rotation of the principal axis of orthotropy with respect to the loading
direction. The failure load in the figure is normalized with respect to the
failure load of unrotated plate without the applied shear load. Comparing the
failure loads in Figs. 18 and 15 for angle of orientation of 20°, for example,
reveals that if the shear load was equal to half of the compressive load at
that configuration the failure load of the plate restrained against shear
deformation would be larger than the unrestrained plate at the same
configuration. Fig. 18 also demonstrates the fact that if the applied loading
is a combined compression and shear, the best result may be achieved by

orienting the principal axis of orthotropy to oppose the shearing load.
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Concluding Remarks:

Failure models for the prediction of compressive strength of plates with
a hole are investigated. One of the models, previously developed and applied
for plates with a crack, is based on the strength failure of the fibers that
leads to fiber kinking failure. A different version of the model is also
developed for cases where shear failure of the fibers are expected to be a
dominant failure mode. Both models are capable of including the effects of
combined shearing and compressive stresses around a hole in a plate and,
therefore, are expected to be applicable to plates under combined shearing and
compressive loadings and anisotropic plates. Comparison of the predictions
of both models with the available expérimental results for quasi-isotropic and
orthotropic plates indicated a good agreement for the kinking failure model.
Because of the relatively poor agreement of the shear failure model with
experimental results compared to the kinking model, predictions are made for
anisotropic plates under combined loadings only with the kinking model. Further
investigation of the shear failure model may be justified for plates under pure
shearing loads which is not included in the present work.

Predictions for orthotropic plates under combined shearing and compressive
loadings are made by using the fiber kinking and the point-stress models.
While the point-stress model predicted moderate decrease in load carrying
capacity of the plate compared to the plate loaded only in compression, the
fiber kinking model indicated significant reductions for cases where 0° plies
are critical. When #45° plies are expected to dominate the failure, both models
displayed similar predictions.

Predictions are also made for anisotropic plates obtained by rotating the

principal axis of orthotropy of an orthotropic plate with respect to the
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loading axis by using both kinking and point-stress failure models. When the
failure is predicted with the failure of 0° plies the two models gave
contradictory results. For example, for a quasi-isotropic plate the kinking
model predicted strength reductions whereas point-stress model predicted
increase in strength. For an anisotropic plate under combined shearing and
compressive loads (shearing load applied in a direction opposite to the side
deflection of the plate) the failure load predictions were larger than the
failure load of the same plate under same loading but loaded orthotropically

(i.e. loaded along the principal axis of orthotropy).
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Table 1: Unidirectional material properties used.

Longitudinal Modulus, GPa

Transverse Modulus, GPa

Shear Modulus, GPa

Major Poisson's Ratio

Thickness, mm/ply

Fiber Volume Fraction

Short Beam Shear Strength, MPa

Fiber Compressive Strength, GPa

Fiber Thickness, mm

Critical Fiber Length, mm

1

1

0

31.0

13.0

6.4

0.38

0.14

0.71

31.0

2.4

.008

0.05

Table 2: Ply orientation and thickness of various laminates used

for failure predictions.

Laminate

A

Ply orientation
019/%4515/904,
4536/906
012/i4530/906
024/i4524/906
0, /345, 4/90,
048/'_*:4512/906

+
0,/ £45,/90,

Thickness, mm.
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6.

10.

10.

10.

10.

10.

10.

72

92

92

92

92

92

92

0° plies, %

25.0

15.4
30.8
46.2
61.5

76.9
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Figure 2: Kinking mode of compressive failure.
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Figure 13: Compressive strength of a plate with a quasi-isotropic laminate
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Figure 14: Compressive strength of a plate with an orthotropic laminate
(laminate D, Table 2) rotated with respect to the loading axis.
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Figure 15: Compressive strength of a plate with an orthotropic laminate
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Figure 18: Compressive strength of a plate with laminate F rotated with respect
to the loading axis under combined compressive and shear loading
(shear. loading 50% of the compression). Failure load is normalized
with respect to the unrotated plate without shear.
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